In vivo real-time imaging of chemotherapy response on the liver metastatic tumor microenvironment using multiphoton microscopy.

نویسندگان

  • Koji Tanaka
  • Masato Okigami
  • Yuji Toiyama
  • Yuki Morimoto
  • Kohei Matsushita
  • Mikio Kawamura
  • Kiyoshi Hashimoto
  • Susumu Saigusa
  • Yoshinaga Okugawa
  • Yasuhiro Inoue
  • Keiichi Uchida
  • Toshimitsu Araki
  • Yasuhiko Mohri
  • Akira Mizoguchi
  • Masato Kusunoki
چکیده

In vivo real-time visualization of chemotherapy response at the cellular level provides us with direct evidence of what happens on the tumor microenvironment of metastatic organs. We imaged the response of metastatic tumor cells and host stromal cells to chemotherapeutics on liver metastatic xenografts in living mice using intravital two-photon laser scanning microscopy (TPLSM). Red fluorescent protein-expressing human colorectal cancer cells (HT29) was inoculated to the spleen of green fluorescent protein-expressing nude mice. 5-Fluorouracil or irinotecan was intraperitoneally administered after the formation of macroscopic liver metastases. Intravital TPLSM was performed at multiple time-points for time-series imaging of liver metastatic xenografts in the same mice. Under the 1st TPLSM, HT29 cells were visualized in hepatic sinusoids at the single cell level. Liver metastatic nodules consisting of viable cancer cells and surrounding stroma with tumor vessels were visualized under the 2nd TPLSM. After chemotherapy, tumor cell fragmentation, condensation, swelling and intracellular vacuoles were observed under the 3rd TPLSM. There was no obvious morphological difference in tumor response between these chemotherapeutics. Time-series intravital TPLSM imaging on the metastatic tumor xenografts may be useful for screening and evaluating new chemotherapeutics with less interindividual variability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors

Background: The rationale was to develop an ablation approach to destroy regions of tumor resistant to radiation and thus reduce the time required for whole tumor ablation, while improving overall tumor control after radiotherapy. Materials and Methods: The system is composed of a micro positron emission tomography (mPET), 7T magnetic resonance imaging (MRI), and a customized MRI-compatible foc...

متن کامل

Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy

BACKGROUND The development of multiphoton laser scanning microscopy has greatly facilitated the imaging of living tissues. However, the use of genetically encoded fluorescent proteins to distinguish different cell types in living animals has not been described at single cell resolution using multiphoton microscopy. RESULTS Here we describe a method for the simultaneous imaging, by multiphoton...

متن کامل

Imaging the Impact of Chemically Inducible Proteins on Cellular Dynamics In Vivo

The analysis of dynamic events in the tumor microenvironment during cancer progression is limited by the complexity of current in vivo imaging models. This is coupled with an inability to rapidly modulate and visualize protein activity in real time and to understand the consequence of these perturbations in vivo. We developed an intravital imaging approach that allows the rapid induction and su...

متن کامل

Rapid extravasation and establishment of breast cancer micrometastases in the liver microenvironment.

To examine the interplay between tumor cells and the microenvironment during early breast cancer metastasis, we developed a technique for ex vivo imaging of murine tissue explants using two-photon microscopy. Cancer cells in the liver and the lung were compared by imaging both organs at specific time points after the injection of the same polyomavirus middle T-initiated murine mammary tumor cel...

متن کامل

Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements.

Physical properties of the microenvironment influence penetration of drugs into tumors. Here, we develop a mathematical model to predict the outcome of chemotherapy based on the physical laws of diffusion. The most important parameters in the model are the volume fraction occupied by tumor blood vessels and their average diameter. Drug delivery to cells, and kill thereof, are mediated by these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2012